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Mass transport in layered fluid systems 

By B. D. DORE 
Department of Mathematics, University of Reading 

(Received 24 July 1968 and in revised form 28 April 1969) 

The method of matched asymptotic expansions is employed to calculate the 
mass transport velocity due to small amplitude oscillatory waves propagating 
in conditions of density and viscosity discontinuities. For progressive waves in a 
two-layer system, it is found that the velocity at  the interface is in the direction 
of wave propagation; when the uppermost surface is free, the velocity there is 
in the direction opposite to that at the interface. If the difference in the densities 
is small, the calculated transport velocity associated with an internal wave can 
be of more importance than that associated with the surface wave as obtained 
from the work of Longuet-Higgins (1953). 

1. Introduction 
The calculation of the principal contribution to the Lagrangian particle drift 

or mass transport velocity in a slightly viscous, incompressible, homogeneous 
fluid was carried out some years ago in a detailed study by Longuet-Higgins 
(1953). In this work consideration was given to both progressive and standing 
waves of small (but finite) amplitude propagating two dimensionally. An 
important feature of the solution for progressive waves was found to be a strong 
forwards velocity near the bottom; the profile of the transport velocity was 
dependent on the wavelength whilst the direction just below the free surface 
could be opposite to that of wave propagation. 

In the present work we determine the principal contribution to the mass 
transport in fluid systems consisting of layers of homogeneous fluids. In  parti- 
cular, the case of two layers is studied but the uppermost surface may be a plane 
rigid boundary or may be free. The method of analysis involves a double ex- 
pansion in powers of two small parameters associated with the wave amplitude 
and fluid viscosities together with notions of boundary-layer theory. Essentially, 
the parameters are a measure of the ratio of wave amplitude to wavelength 
and of the inverse wave Reynolds number. An expansion in powers of the former 
parameter only was carried out many years ago for a single viscous fluid by 
Harrison (1909). 

The case of progressive waves is here analyzed explicitly and it is found that 
the mass transport velocity can formally be an order of magnitude larger than 
that obtained by Longuet-Higgins (1953) for a single homogeneous fluid. Under 
conditions of zero total horizontal flow in each fluid, the drift a t  the interface is 
shown to be in the direction of wave propagation whilst that at  a free upper 
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surface is in the opposite direction. In  addition, the profile of the transport 
velocity in either fluid is found to be independent of wavelength. 

2. Formulation 
We refer the equations of motion to Cartesian co-ordinates (x, z )  fixed in the 

equilibrium level of the surface of discontinuity z = 0 separating two homogeneous 
incompressible fluids, the z axis being directed vertically upwards. The region 
of flow is assumed to be bounded below by the fixed horizontal plane z = -h(l) 
whilst the upper boundary is either assumed to be the fixed plane z = h(2) or 
is assumed to be free. We suppose that the density of the lower fluid is greater 
than that of the upper fluid. The equations of laminar motion for either fluid are 

where q = (u, w), p, p and u denote fluid velocity, change in pressure from the 
equilibrium state, density and kinematic viscosity respectively. Defining a 
stream function I I .  such that 

it can readily be shown that 

+-- --- v2+ = vv4y). 1 a a+ a a+ a (- at az ax ax ax 

We now propose to consider particular solutions of (2.3) representative of 
progressive waves in the case when the fluid viscosities are small in some sense. 
It will thus be possible t o  analyze the flow by appealing to well-known methods of 
boundary-layer theory as has been done, for example, in the works of Johns 
(1968) and Dore (1969) with reference to waves of infinitesimal amplitude. 
Let a be the real angular frequency of oscillation and k be the complex wave- 
number allowing for spatial attenuation of the waves. Then equation (2.3) 
may be non-dimensionalized according to the scheme 

F = kor, t" = a t ,  IJ = (k ; / r )+ ,  8 = (ukf/a)*. (2.4) 

The quantity k, is the wave-number according to the inviscid theory of waves 
of infinitesimal amplitude, whilst E is the inverse wave Reynolds number. In 
the expansion scheme to follow, we shall assume 2 < 1 but, if the waves are 
long relative to a fluid depth W), it will be further necessary that t < k 0 W ,  
( r  = 1,2).  Henceforth, we omit the symbol (*), SO that the non-dimensional form 

The kinematic viscosity u, and hence E ,  may be different in the two fluids. 
The analysis will first be carried out by employing the methods of matched 

asymptotic expansions, but a less formal derivation of the principal result will 
also be indicated in a later section. 
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3. Consideration of the boundary layers 

we write 
Within the viscous layers adjacent to the oscillating interface, z = [(x, t ) ,  

$(x, 2, t ;  E )  = cc$.,(Z; E )  exp{i(kx - d)} +a2$,(x, 8, t; E )  + . . ., 
$1 = $lO(Z) + 411V) + E2$12(Z) + - * - 9  

$2 = E-1$2,-&, 2, t)  + $&, 2, t )  + €$21(X, 2, t )  + . . ., 

(3.1) 

(3.2) 

(3.3) 

k = ko+€kl+ ..., (3.4) 

where z = €2, (3.5) 

CT = 1 = k, here and a is an ordering parameter (based on the ratio of wave 
amplitude to wavelength). Only the real parts of complex quantities on the 
right-hand side of (3.1) are physically significant. The presence of the term 
$2,-1 may seem surprising but it does not appear to be immediately obvious 
that it can be omitted. 

Substitution of the above equations into (2 .5 )  yields the following equations 

97/fl0 = p$ + iy;, = 0, (3.6) 

P$ll = 0, 9 * 1 2  = ;*lo> (3.7) 

for $10, $11, $12: 

where dashes denote differentiation with respect to 2 and use has been made in 
(3.7) of the result that $lo = constant by linear theory ($;, + 0 would imply 
horizontal particle velocities of order ae-l). We shall later require the solutions 

$\\) = UI;) exp( - lzZ(’)} + cii’ + di:) Z(1), 

$1:) = ui:) exp{nZ@)} + ci:) + di2,)2(2), 

(3.8) 

(3.9) 

where n = ( -  1 + i ) / J 2  and superscripts (1) and (2) denote quantities in the 
lower and upper fluid respectively. We further note that and V:2 are ex- 
ponentially small as we approach the outer edges of the interfacial layers. 
The quantities $2,-1, $-20, . . . (which are of second order in the amplitude para- 
meter) contain parts which are independent of the time and which have the 
decay factor exp{i(k - k*)x}, the asterisk denoting a complex conjugate. Omitting 
this factor for the moment and indicating the remaining steady part of $2,-.l, 

$20, . . . by a bar, we obtain 
-. 
IbY-1  = 0, (3.10) 

-. 
p2; = ii$-?oy;l, (3.1 1 )  

$-% = @[@OYh + W K l ) $ - T O  + ko($-:lY;l)’l. (3.12) 
- 

In  deriving these equations, we have made use of the result 

Re(P) Re(&) = +Re(PQ*) = iRe(P*Q), (3.13) 

P ,  Q being any two complex quantities with a time period 2 7 ~ 1 ~ ~ .  
The interfacial boundary conditions of interest are the kinematical condition 

8-2 
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together with continuity of velocity and tangential stress across the interface 
x = [(x, t ) .  These conditions will be satisfied (to the required order) by means of 
a direct expansion about the equilibrium interfacial level x = 0. As a consequence, 
the restriction 

a < €  (3.14) 

on wave amplitude must be imposed, for the reasons stated by Longuet-Higgins 
(1953). If we write 

6 = 4 C l 0  + eCll + . . .) exp{i(kx - ct)} + a2C2(x, t )  + . . . , (3.15) 

the kinematical condition 

- 
yields $2,-1 = 0, (3.16) 

on Z = 0. To ensure that the horizontal velocity u be continuous across the inter- 
face, we shall also require the quantities 

.-2&,-l, 4 F ; o  + 46:lY;l), (3.17) 

to be continuous on 2 = 0. Lastly, to the second order in amplitude, the tangential 
stress condition may be written 

(see, for example, Longuet-Higgins 1960), ,u = pv being the fluid viscosity. 
Expanding this condition about the equilibrium level, x = 0, of the interface 
then demands that 

,u~-~$:,-~, ,u~-~(Fi~ + +C?O$-Yl), pe-l[P& + W2hK2 + C3K1) I, (3.19) 

be continuous on 2 = 0. The quantity Cl1 can effectively be regarded as zero for 
the two-layer fluid system considered here (if the interfacial amplitude is taken 
to be prescribed) but would definitely be needed for three or more layers. 

In the flow outside the boundary layers the horizontal Eulerian mean velocity 
will be seen to be of order a2c1.  In  consequence, asymptotic matching will 

be negligibly small as we approach the outer edges of the interfacial layers. 
Thus, integrations of (3.10), (3.11) and (3.12) together with use of (3.7) give 

- 

(3.21) 1 h , - I  = 0, - 
$;o = - +*:o Yil+ b20,  

v 21 - --'@*V 2 12 + 9i(GWo + ko$&)$;l+ cz1, 
- 

10 

where we have satisfied the requirements (3.16) and (3.20). (After the first in- 
tegration of (3.12), the imaginary quantity 4iko@?iq9il can be added to the right- 
hand side to facilitate the next integration, since only the real part of Tzl is of 
physical interest.) 
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In  the work of Longuet-Higgins (1953) for a single layer of fluid, application 
of the tangential stress condition enabled an explicit boundary condition to be 
determined for the derivative of the (lowest order) horizontal mass transport 
velocity in the interior of the fluid. The procedure is necessarily different in 
the present work and the constants b,,, c , ~  in (3.21) can only be determined by a 
consideration of the Eulerian mean velocity over the whole region of the fluid. 
Thus, in the lower boundary layer adjacent to the rigid boundary x = -W), 
it is known from the analysis of Longuet-Higgins (1953) and others that the 
lowest order horizontal Eulerian mean velocity is O(a2). The same is true in the 
uppermost boundary layer when it is adjacent to the rigid boundary z = h(2). 
If the top surface is free, however, with equation z = h(,) + <(,), the equations 
analogous to (3.21) for the viscous surface layer are 

(3.22) 

the dashes denoting differentiation with respect to the variable ( z  - W ) / d z ) ,  
since $il = constant for such a layer with clean free surface (that is, the lowest 
order horizontal velocity, O(a) ,  is constant through the layer). These results 
will now enable us to readily calculate the lowest order drift velocity, O(cc.2e-1), 
in the interior of the fluid system. 

4. Consideration of the outer flow 
In  the flow outside the above mentioned boundary layers we write 

Y ( x , x , t ;  e )  = cc.Yl(z;E)exp{i(kx-at)}+a2Y,(x,z,t; E ) +  ..., (4.1) 

(4.2) 

(4.3) 

Y, = Y&) + E Y & )  + . . ., 
Y, = e-Y2,4(x, z, t )  +Y,,(x, 2, t )  + ..., 

analogous to equations (3.1), (3.2) and (3.3). Then, when cc. < e, we have 

v4F2 = 0 (4.4) 

as in the conduction solution of Longuet-Higgins (1953). In order to match with 
the solutions in the interfacial layers, the steady part of Y2,+ Y20, ... must 
possess the factor exp{i(k - k*)x).  Leaving this aside for the moment we have 

The boundary conditions on Fdyll are that 

( 4 . 7 4  

for a fluid system contained between rigid horizontal boundaries, whilst if the 
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uppermost surface is free, (3.22) shows that the conditions (4.7 a) must be replaced 

(4.7b) 

The constant & in equation (3.22) can be determined by asymptotic matching 
only when the complete solution for T.fLl has been obtained. On the equilibrium 
level z = 0 of the interface, matching techniques show that 

TXL, = 0, (4.8) 

(4.10) 

( r  = 1,2), where the outer edges of the interfacial layers are here characterized 
by 2 = 2,. Thus, we have here 10 conditions which, together with the require- 
ments (3.17) and (3.19) on &a and PLl respectively, yield 12 equations for the 
12 unknowns AX,,, BILl, CtL,, DXLl, bk), c$). 

(a) Fluid bounded by horizontal planes 

For this case boundary conditions ( 4 . 7 ~ )  apply and, with a slight adjustment 
in the notation, we easily find 

(4.11) 

Using the result, from the theory for waves of infinitesimal amplitude, that 

(4.14) 

(4.15) 

J2 6 = - ( l+ i )AA* 16 
(4.17) 

where, of course, only the real part of DO is physically meaningful. We note 

Re(D) >, 0. (4.18) 
here that 
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(b )  Fluid with free upper surface 
In  this case, we employ boundary conditions (4.7 b) ,  and find 

(4.22) 

The present analysis has therefore revealed a horizontal Eulerian mean 
velocity of order 01~6-1 which exists throughout the whole fluid system. It is 
clear, however, that this velocity vanishes when p@) = 0 or when p(1) = p@). 
The associated velocity in the interfacial layers is obtained from 

$Lo = D - 4$&Y;1 (4.23) 

and thus varies rapidly through the layers. Observe also that the total horizontal 
Eulerian transport, represented in the lower fluid (say) by 

- 

is necessarily zero to the lowest order, O(a2e-l), in each layer on account of 
equations (4.6)) (4.7) and (4.8), the latter of which is a consequence of the kine- 
matic condition (3.16). This will be commented on further in the next section. 

The lowest order steady vorticity in the interfacial layers is O(a2s-2) and is 
exponentially small on approaching the outer edges; the next term in the vorticity 
expansion is O(01~e-l) and tends to the values 

(a)  4D(l)/h(l) and - 4D(2)/h(2), 

( b )  4D(l)/h(l) and - 3D(z)/h(2), 

at the outer edges of the lower and upper interfacial layers. This latter term is 
therefore responsible for the generation of vorticity, 0(01~e-~) ,  in the outer flow 
through the medium of viscous diffusion. The vorticity so generated is thus 
dependent on v. 

5. Mass transport 

transport velocity U, is given by 
According to Longuet-Higgins (1953), the horizontal Lagrangian or mass 

U, = i i z + ~ u l d t  au &+/ t w,dt-', au 
az 

to the second order in the amplitude parameter. Restricting our attention to 
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FIGURE 1. (a)  Profile of horizontal mass transport velocity in a progressive wave for a 
two-layer fluid system bounded by two rigid horizontal planes. ( b )  Profile of horizontal 
mass transport velocity in a progressive wave for a two-layer fluid system whose upper- 
most surface is free. 
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the contribution to U, of order a2s-l, we therefore have the following features of 
the induced flow. 

(a) Fluid bounded by horizontal planes 

Within the lower boundary layer, adjacent to x = - h(l), U, is zero. In  the interior 
of the lower fluid U, has the parabolic distribution of (4.12) with a stationary value 
(minimum) U, = - +?& a t  z = - gh(l), a zero at  x = - *h(l) and a value U, = U,$ >, 0 
at  the edge of the interfacial layer where the transport velocity is greatest and 
in the direction of wave propagation for all possible values of the physical quan- 
tities involved. Within the layers, the horizontal mass transport velocity is given 

by U, = a 2 e - 1 ( & o + ~ ~ 1 0 ~ ~ ~ ) e x p { i ( k - h * ) x }  = a2s-lDexp{i(k-k*)x] (5.2) 

and so is constant through both layers (and continuous at  the interface itself). 
The profile of the mass transport velocity in the upper fluid is similar in form to 
that in the lower fluid, becoming zero at  the edge of the uppermost viscous layer, 
throughout which it is zero. The quantity U,/U,, is plotted against the vertical 
co-ordinate in figure l(a). 

(b) Fluid with free upper surface 

The profile of the mass transport velocity in the lower fluid is similar to that in 
case (a), though the interfacial velocity qi is different (but still positive). In  the 
interior of the upper fluid U, has the parabolic distribution of (4.20) with a zero 
at z/h(2) = 1 - J ( 3 ) / 3  and zero slope at  the edge of the viscous surface layer, 
where = -it&. The mass transport velocity is constant through the free 
surface layer taking the negative value - $L& = a2e(2)-1p20, which thus determines 
the constant p2, of (3 .22) .  The form of U,/qi as a function of the vertical co- 
ordinate is shown in figure l(b). 

In  both cases, (a) and (b ) ,  the total horizontal flow O(a2e-l) due to the mass 
transport velocity is zero in each fluid. Other parabolic velocity distributions 
containing some arbitrary constants but lacking the factor exp{i(k - k*)x)  can be 
added to those obtained above. However, these additional contributions to the 
mass transport do not decay as x -+ co where the waves themselves have vanished 
and we do not consider them further. 

When the uppermost fluid surface is adjacent to a fixed rigid boundary, 
standard results of linear inviscid theory give 

sinh k,(z + h(1)) sinh k,(z - h(2)) aY& = ak, sinhk,h(l) ’ aY# = - ak, sinhk,h(2) ’ ( 5 - 3 )  

so that 

Similarly, if the uppermost surface is free, 

aA = ak,(w(l)+ d2)). 
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(p'" -p'2') - ,p'o(,'a + (3'2)) + ,Z(p(2) + p'1),(1)w(2)) r 0, (5.7) 

ud2)/ac1) = s/(s cosh Ic,h@)- sinh k,h(2)), (5 .8 )  

whence a A  = u(l)k,,(w(l)+ d2)) - adz)k, cosech k,h(2). (5.9) 

Here, dl) is the wave amplitude at the interface and aJ2) that  at the free surface 
according to linear inviscid theory. The lowest order ma,ss transport velocity 
can now be calculated from 8 4 in either of the above two cases. 

6. Alternative formulation 
The expansion scheme given in the previous sections provides a systematic 

procedure for obtaining higher order, steady, Eulerian velocity components 
O(a2), O(a%),  .... However, the scheme has some disadvantage in not demon- 
strating very clearly the physical processes by which the principal contribution 
O(a%-') of the horizontal steady velocity arises. It therefore seems worthwhile 
to present here the following alternative and less formal account. 

The essential feature of the considered fluid motion is that  of a periodic inter- 
facial wave decaying slowly with x with logarithmic decrement O(s). The main 
part of the oscillatory motion is irrotational except for interfacial (and top and 
bottom) boundary layers. From equation (2.3) and the expansion (3.1), the 
mean vorticity equation to second order in amplitude parameter a is 

This will be an accurate approximation if the condition (3.14) is satisfied. 
Outside the boundary layers V ", vanishes, whence 

V4F2 = 0,  

and the induced Eulerian mean velocity satisfies Stokes' equation in the main 
part of the fluid. 

The x component of the Navier-Stokes equation yields 

Within one of the interfacial boundary layers the first term on the left is O(a2e), 
whilst the second is O(a2e-l) since u1 varies rapidly through the layer. Similarly, 
use of the corresponding x component equation and matching with the outer 
flow shows that the pressure term in (6.3) is O(a2e). Thus, on integration, 

where TZz is the principal contribution to a total stress component in the layer 
and the decay factor is suppressed. Equation (3.18) shows that 
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is continuous on the equilibrium level x = 0 of the interface. But 
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Thus (7,, + c1 2) 
is continuous on z = 0. Now according to the linear theory, the normal stress 
condition at the interface requires 

(6.6) pp - (2) = (p- (2) P1 P )9Cl on = 0, 

surface tension being neglected, so that equation (6.5) gives 

(6- 7) 

where K = Im(k) is the logarithmic decrement associated with spatial decay of 
the wave motion and is O ( e ) .  [That the stress TZx is discontinuous across z = 0 
should come as no surprise-so also is the Eulerian mean velocity U2 according 
to equation (3.17). Both Tzz and U, are, of course, continuous across the actual 
position z = 5 of the interface.] Equations (6.4) and (6.7) now show that the 
change in Tzx across the whole interfacial boundary-layer region is given by 

+-(2) - - 1 ,g~C~C:(p(~)-p(~)) on z = 0, 

the term on the right being O(a2e). 

proceed as follows. Denoting outer flow quantities by capital letters we have 
To obtain the corresponding change in the viscous stress term pUaii2/az we 

aul apl 
at ax p- +- = O(ae2). 

Let Cl now be associated with the vertical displacement of a fluid particle. Then 

(6.10) 

so that p q w ,  = c1 ap1 + 0(a2e2). 

Combined use of equations (6.5), (6.8) and (6.11) now shows that 

(6.11) 

(6.12) 

where the integral is to be taken (in two parts) across the whole interfacial 
boundary-layer region. It can readily be shown that 

(6.13) 
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where co is the (inviscid) phase velocity c/k,,. But the main contribution to the 
dissipation integral acroSS the interfacial layers is 

(6.14) 

after an integration by parts, since u1 and p aul/az are continuous on x = 0. 

Thus, (6.15) 

and calculation of the integral on the right-hand side confirms the value of 
[paU,/az] as obtained from the formal analysis of $4. 

Integrating again across a single interfacial layer we have from equation (6.4) 

But 

so that, in consequence of equation (6.16), 

- au 
u2 + cl -l = const. + O(a2). 

ax 
(6.17) 

Since the expression on the left is continuous on z = 0 and since aul/az is O(a)  
at the outer edge of the interfacial layer, we have 

[U2] = O(a2) (6.18) 

across the whole interfacial region. This conclusion is in accordance with the 
results of $ 4. 

In consequence of (6.15), 8ii2/az is different and O(a2e-l) at the two outer edges 
of the interfacial layers. This property, together with (6.2), (6.18) and the 
boundary conditions on Uz at the top and bottom, establishes the existence of an 
induced Eulerian mean velocity of order The essential physical feature 
is the change across the whole interfacial boundary layer region in the viscous 
stress pUa;ii,/az. 

7. Discussion 

the horizontal Lagrangian drift velocity in the fluid system. When 
In general, the calculated term O(a2e-l) will be the principal contribution to 
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and the uppermost surface is free, the present calculation yields the main con- 
tribution to the mass transport velocity associated with the internal wave. 
But if kh@) = O( 1) on the scale of E and 7, we have a2h/g = O(7) for this wave and 
require 

to fu161 the condition e < 1. However, in order that the interfacial transport 
velocity in the internal wave be of more importance than that in the surface 
wave (with the same wavelength), it will be necessary that 

where the subscripts s, i denote interfacial amplitudes in the surface and internal 
waves respectively. The condition (7.3) can be satisfied for a considerable range 
of the physical quantities involved. 

The analysis of previous sections has yielded the distribution of the lowest 
order mass transport velocity in interfacial conditions. It can, however, also 
be adapted to study the case of standing waves (considered as the combination 
of two progressive waves attenuated in opposite directions). A further applica- 
tion could be carried out in the case of multiple-layered fluid systems. There are 
no outstanding difficulties, other than algebraic, so that we shall not pursue the 
topic here. 

The restriction on wave amplitude (a  < E )  is, of course, a severe one, so that 
the present work can only be regarded as a preliminary analysis. In  practice, 
it is possible that the range of validity of the present conduction solution may 
be rather better than is implied by equation (3.14), as has been indicated by 
Longuet-Higgins (1953) and the experiments of Russell & Osorio (1957) for 
progressive waves in a single fluid layer. The case when 01 > e was considered by 
Longuet-Higgins (1953). However, he made no allowance for the presence of 
double boundary layers, the likely necessity for which has been shown by 
Riley (1965) and Stuart (1966), at least in the neighbourhood of rigid boundaries. 
A different, possible application of the present theory is to particle velocities in 
internal waves in oceanographical conditions. When there is a single abrupt 
thermocline it is known that the first internal mode can be represented to good 
approximation on the basis of inviscid theory by the internal mode of an appro- 
priate two-layer fluid system. The present results are related to a viscous pheno- 
menon but may be of some interest, a t  least qualitatively, in the thermocline 
region provided the density gradients there are sufficiently large. This last 
point deserves further investigation. 

According to inviscid theory, the Lagrangian drift velocity would be O(a2). The 
term O(a2e-l) found in the present work is set up by diffusion of vorticity out- 
wards from the interfacial layers. In this respect, i t  is of interest to note the 
following point concerning the induced flow in the bottom boundary layer. 
The drift velocity there is O(a2) and is influenced by the O ( a 2 c 1 )  outer flow 
to the extent that a linear term in the magnified variable ( x  + h(l))/dl)  is required, 
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since the O(a2e-1) vorticity at the outer edge of this layer is non-zero by equations 
(4.12) and (4.20). The possible presence of this term has been discussed in another 
context by Riley (1965) and Stuart (1966), but in both of these works, such a 
term was not required. 

The author is grateful to the referees for some helpful suggestions which 
have led to several improvements on an earlier draft of this paper. 
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